Pattern matching and associative artificial neural networks for water distribution system time series data analysis
نویسندگان
چکیده
Water distribution systems, and other infrastructures, are increasingly being pervaded by sensing technologies, collecting a growing volume of data aimed at supporting operational and investment decisions. These sensors monitor system characteristics, i.e. flows, pressures and water quality, such as in pipes. This paper presents the application of pattern matching techniques and binary associative neural networks for novelty detection in such data. A protocol for applying pattern matching to automatically recognise specific waveforms in time series based on their shapes is described together with a system called Advanced Uncertain Reasoning Architecture (AURA) Alert for autonomous determination of novelty. AURA is a class of binary neural network that has a number of advantages over standard artificial neural network techniques for condition monitoring including a sound theoretical basis to determine the bounds of the system operation. Results from application to several case studies are provided including both hydraulic and water quality data. In the case of pattern matching, the results demonstrated some transferability of burst patterns across District Metered Areas; however limitations in performance and difficulties with assembling pattern libraries were found. Results for the AURA system demonstrate the potential for robust event detection across multiple parameters providing valuable information for diagnosis; one example also demonstrates the potential for detection of precursor information, vital for proactive management. doi: 10.2166/hydro.2013.057 S. R. Mounce (corresponding author) R. B. Mounce J. B. Boxall Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield, S1 3JD, UK E-mail: [email protected] T. Jackson J. Austin Advanced Computer Architecture Group, Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملDistribution Systems Reconfiguration Using Pattern Recognizer Neural Networks
A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...
متن کاملEngineering Application Of Correlation on Ann Estimated Mass
A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014